Contents

8. Vapnik-Chervonenkis Dimension Bounds for Neural Networks

Part 2: Pattern Classification with Real-Output Networks
9. Classification with Real-Valued Functions

10. Covering Numbers and Uniform Convergence

11. The Pseudo-Dimension and Fat-Shattering Dimension
8. Vapnik-Chervonenkis Dimension Bounds for Neural Networks

Part 2: Pattern Classification with Real-Output Networks
9. Classification with Real-Valued Functions

10. Covering Numbers and Uniform Convergence

11. The Pseudo-Dimension and Fat-Shattering Dimension
Definition 7.5 Let G be a set of real-valued functions defined on \mathbb{R}^d. We say that G has solution set components bound B if for any $1 \leq k \leq d$ and any \{f_1, \ldots f_k\} \subseteq G$ that has regular zero-set intersecions, we have

$$CC\left(\bigcap_{i=1}^{k}\{a \in \mathbb{R}^d : f_i(a) = 0\} \right) \leq B.$$

Theorem 7.6 Suppose that F is a class of real-valued functions defined on $\mathbb{R}^d \times X$, and that H is a k-combination of $\text{sgn}(F)$. If F is closed under addition of constants, has solution set components bound B, and functions in F are C^d in their parameters, then

$$\Pi_H(m) \leq B \sum_{i=0}^{d} \binom{mk}{i} \leq B \left(\frac{emk}{d} \right)^d,$$

for $m \geq d/k$.
Consider classes of functions that can be expressed as boolean combinations of thresholded real-valued functions, each of which is polynomial in its parameters.

Lemma 8.1 Suppose \(f : \mathbb{R}^d \to \mathbb{R} \) is a polynomial of degree \(l \). Then the number of connected components of \(\{ a \in \mathbb{R}^d : f(a) = 0 \} \) is no more than \(l^d - 1(l + 2) \).

Corollary 8.2 For \(l \in \mathbb{N} \), the set of degree \(l \) polynomials defined on \(\mathbb{R}^d \) has solution set components bound \(B = 2(2l)^d \).
Theorem 8.3 Let F be a class of functions mapping from $\mathbb{R}^d \times X$ to \mathbb{R} so that, for all $x \in X$ and $f \in F$, the function $a \mapsto f(a, x)$ is a polynomial on \mathbb{R}^d of degree no more than l. Suppose that H is a k-combination of $\text{sgn}(F)$. Then if $m \geq d/k$,

$$\Pi_H(m) \leq 2 \left(\frac{2emkl}{d} \right)^d,$$

and hence $\text{VCdim}(H) \leq 2d \log_2(12kl)$.
Theorem 8.4 Suppose \(h \) is a function from \(\mathbb{R}^d \times \mathbb{R}^n \) to \(\{0, 1\} \) and let

\[
H = \{ x \mapsto h(a, x) : a \in \mathbb{R}^d \}
\]

be the class determined by \(h \). Suppose that \(h \) can be computed by an algorithm that takes as input the pair \((a, x) \in \mathbb{R}^d \times \mathbb{R}^n \) and returns \(h(a, x) \) after no more than \(t \) operations of the following types:

- the arithmetic operations +, −, ×, and / on real numbers,
- jumps conditioned on >, ≥, <, ≤, =, and \(\neq \) comparisions of real numbers, and
- output 0 or 1.

Then \(\text{VCdim}(H) \leq 4d(t + 2) \).

Theorem 8.5 For all \(d, t \geq 1 \), there is a class \(H \) of functions, parametrized by \(d \) real numbers, that can be computed in time \(O(t) \) using the model of computation defined in Theorem 8.4, and that has \(\text{VCdim}(H) \geq dt \).
8.3 Piecewise-Polynomial Networks

Theorem 8.6 Suppose \(N \) is a feed-forward linear threshold network with a total of \(W \) weights, and let \(H \) be the class of functions computed by this network. Then \(\text{VCdim}(H) = O(W^2) \).

This theorem can easily be generalized to network with piecewise-polynomial activation functions. A piecewise-polynomial function \(f : \mathbb{R} \rightarrow \mathbb{R} \) can be written as \(f(\alpha) = \sum_{i=1}^{p} 1_{A(i)}(\alpha)f_i(\alpha) \), where \(A(1), \ldots, A(p) \) are disjoint real intervals whose union is \(\mathbb{R} \), and \(f_1, \ldots, f_p \) are polynomials. Define the degree of \(f \) as the largest degree of the polynomials \(f_i \).
Theorem 8.7 Suppose N is a feed-forward network with a total of W weights and k computation units, in which the output unit is a linear threshold unit and every other computation unit has a piecewise-polynomial activation function with p pieces and degree no more than l. Then, if H is the class of functions computed by N, $\text{VCdim}(H) = O(W(W + kl \log_2 p))$.
Theorem 8.8 Suppose N is a feed-forward network of the form described in Theorem 8.7, with W weights, k computation units, and all non-output units having piecewise-polynomial activation functions with p pieces and degree no more than l. Suppose in addition that the computation units in the network are arranged in L layers, so that each unit has connections only from units in earlier layers. Then if H is the class of functions computed by N,

$$\Pi_H(m) \leq 2^L (2emkp(l + 1)^{l-1})^{WL},$$

and

$$\text{VCdim}(H) \leq 2WL \log_2(4WL^2k/\ln 2) + 2WL^2 \log_2(l + 1) + 2L.$$

For fixed p, l, $\text{VCdim}(H) = O(WL \log_2 W + WL^2)$.

Theorem 8.9 Suppose $s : \mathbb{R} \to \mathbb{R}$ has the following properties:

1. $\lim_{\alpha \to \infty} s(\alpha) = 1$ and $\lim_{\alpha \to -\infty} s(\alpha) = 0$, and
2. s is differentiable at some point $\alpha_0 \in \mathbb{R}$, with $s'(\alpha_0) \neq 0$.

For any $L \geq 1$ and $W \geq 10L - 14$, there is a feed-forward network with L layers and a total of W parameters, where every computation unit but the output unit has activation function s, the output unit being a linear threshold unit, and for which the set H of functions computed by the network has

$$\text{VCdim}(H) \geq \left\lfloor \frac{L}{2} \right\rfloor \left\lfloor \frac{W}{2} \right\rfloor$$
8.4 Standard Sigmoid Networks
Discrete inputs and bounded fan-in

- Consider networks with the standard sigmoid activation, $\sigma(\alpha) = 1/(1 + e^{-\alpha})$.

- We define the fan-in of a computation unit to be the number of input units or computation units that feed into it.

- **Theorem 8.11** Consider a two-layer feed-forward network with input domain $X = \{-D, -D + 1, \ldots, D\}^n$ (for $D \in \mathbb{N}$) and k first-layer computation units, each with the standard sigmoid activation function. Let W be the total number of parameters in the network, and suppose that the fan-in of each first-layer unit is no more than N. Then the class H of functions computed by this network has $\text{VCdim}(H) \leq 2W \log_2(60ND)$.
Theorem 8.12 Consider a two-layer feed-forward linear threshold network that has W parameters and whose first-layer units have fan-in no more than N. If H is the set of functions computed by this network on binary inputs, then $\text{VCdim}(H) \leq 2W \log_2(60N)$. Furthermore, there is a constant c s.t. for all W there is a network with W parameters that has $\text{VCdim}(H) \geq cW$.
General standard sigmoid networks

Theorem 8.13 Let H be the set of functions computed by a feed-forward network with W parameters and k computation units, in which each computation unit other than the output unit has the standard sigmoid activation function (the output unit being a linear threshold unit). Then

$$
\Pi_H(m) \leq 2^{(Wk)^2/2} (18Wk^2)^{5Wk} \left(\frac{em}{W} \right)^W
$$

provided $m \geq W$, and

$$
\text{VCdim}(H) \leq (Wk)^2 + 11Wk \log_2(18Wk^2).
$$
Theorem 8.14 Let h be a function from $\mathbb{R}^d \times \mathbb{R}^n$ to $\{0, 1\}$, determining the class

$$H = \{x \mapsto h(a, x) : a \in \mathbb{R}^d\}.$$

Suppose that h can be computed by an algorithm that takes as input the pair $(a, x) \in \mathbb{R}^d \times \mathbb{R}^n$ and returns $h(a, x)$ after no more than t of the following operations:

- the exponential function $\alpha \mapsto e^\alpha$ on real numbers,
- the arithmetic operations $+,-,\times,$ and $/$ on real numbers,
- jumps conditioned on $>,\geq, <, \leq, =,$ and \neq comparisions of real numbers, and
- output 0 or 1.

Then $\text{VCdim}(H) \leq t^2d(d + 19 \log 2(9d))$. Furthermore, if the t steps include no more than q in which the exponential function is evaluated, then

$$\Pi_H(m) \leq 2^{(d(q+1))^2/2} (9d(q + 1)2^t)^{5d(q+1)} \left(\frac{em(2^t - 2)}{d}\right)^d,$$

and hence $\text{VCdim}(H) \leq (d(q + 1))^2 + 11d(q + 1)(t + \log_2(9d(q + 1)))$.

Proof of VC-dimension bounds for sigmoid networks and algorithms

Lemma 8.15 Let f_1, \ldots, f_q be fixed affine functions of a_1, \ldots, a_d, and let G be the class of polynomials in $a_1, \ldots, a_d, e^{f_1(a)}, \ldots, e^{f_q(a)}$ of degree no more than l. Then G has solution set components bound

$$B = 2^{q(q-1)/2}(l + 1)^{2d + q(d + 1)^d + 2q}.$$

Lemma 8.16 Suppose G is the class of functions defined on \mathbb{R}^d computed by a circuit satisfying the following conditions: the circuit contains q gates, the output gate computes a rational function of degree no more than $l \geq 1$, each non-output gate computes the exponential function of a rational function of degree no more than l, and the denominator of each rational function is never zero. Then G has solution set components bound

$$2^{(qd)^2/2}(9qdl)^{5qd}.$$

Contents

8. Vapnik-Chervonenkis Dimension Bounds for Neural Networks

Part 2: Pattern Classification with Real-Output Networks
9. Classification with Real-Valued Functions

10. Covering Numbers and Uniform Convergence

11. The Pseudo-Dimension and Fat-Shattering Dimension
9.2 Large Margin Classifiers

- Suppose F is a class of functions defined on the set X and mapping to the interval $[0, 1]$.

- **Definition 9.1** Let $Z = X \times \{0, 1\}$. If f is a real-valued function in F, the margin of f on $(x, y) \in Z$ is

$$\text{margin}(f(x), y) = \begin{cases} f(x) - 1/2 & \text{if } y = 1 \\ 1/2 - f(x) & \text{otherwise.} \end{cases}$$

Suppose γ is a nonnegative real number and P is a probability distribution on Z. We define the error $e_{P}^{\gamma}(f)$ of f w.r.t. P and γ as the probability

$$e_{P}^{\gamma}(f) = P\{\text{margin}(f(x), y) < \gamma\},$$

and the misclassification probability of f as

$$e_{P}(f) = P\{\text{sgn}(f(x) - 1/2) \neq y\}.$$
Definition 9.2 A classification learning algorithm L for F takes as input a margin parameter $\gamma > 0$ and a sample $z \in \bigcup_{i=1}^{\infty} Z^{i}$, and returns a function in F s.t., for any $\epsilon, \delta \in (0, 1)$ and any $\gamma > 0$, there is an integer $m_0(\epsilon, \delta, \gamma)$ s.t. if $m \geq m_0(\epsilon, \delta, \gamma)$ then, for any probability distribution P on $Z = X \times \{0, 1\}$,

$$P^m \left\{ \text{er}_P(L(\gamma, z)) < \inf_{g \in F} \text{er}_P^\gamma(g) + \epsilon \right\} \geq 1 - \delta.$$

Sample error of f w.r.t. γ on the sample z:

$$\hat{\text{er}}_Z^\gamma(f) = \frac{1}{m} |\{i : \text{margin}(f(x_i), y_i) < \gamma\}|$$
Proposition 9.3 For any function $f : X \to \mathbb{R}$ and any sequence of labelled examples $((x_1, y_1), \ldots, (x_m, y_m))$ in $(X \times \{0, 1\})^m$, if

$$\frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2 < \epsilon$$

then

$$\hat{e}_r^\gamma(f) < \epsilon/(1/2 - \gamma)^2$$

for all $0 \leq \gamma < 1/2$.
Contents

8. Vapnik-Chervonenkis Dimension Bounds for Neural Networks

Part 2: Pattern Classification with Real-Output Networks
9. Classification with Real-Valued Functions

10. Covering Numbers and Uniform Convergence

11. The Pseudo-Dimension and Fat-Shattering Dimension
10.2 Covering Numbers

- Recall that the growth function

\[\Pi_H(m) = \max\{|H_S| : S \subseteq X \text{ and } |S| = m\}. \]

- Since H maps into \{0,1\}, \(|H_S| \) is finite for every finite S. However, if F is a class of real-valued functions, \(|F_S| \) may be infinite.

- Use the notion of covers to measure the 'extent' of \(F_S \)
10.2 Covering Numbers

- Covering numbers for subsets of Euclidean space

- **Definition** Given $W \subseteq \mathbb{R}^k$ and a positive real number ϵ, we say that $C \subseteq \mathbb{R}^k$ is a $d_\infty \epsilon$-cover for W if $C \subseteq W$ and for every $w \in W$ there is a $v \in C$ such that

$$\max \{|w_i - v_i| : i = 1, \ldots, k\} < \epsilon$$

- **Definition** We could also define an ϵ-cover for $W \subseteq \mathbb{R}^k$ as a subset C of W for which W is contained in the union of the set of open d_∞ ball of radius ϵ centred at the points in C.

- **Definition** The $d_\infty \epsilon$-covering number of W, $\mathcal{N}(\epsilon, W, d_\infty)$, to be the minimum cardinality of a $d_\infty \epsilon$-cover for W.

10.2 Covering Numbers

- Uniform covering numbers for a function class

 - **Definition** Suppose that F is a class of functions from X to \mathbb{R}. Given a sequence $x = (x_1, x_2, \ldots, x_k) \in X^k$, we let $F|_x$ be the subset of \mathbb{R}^k given by

 \[F|_x = \{(f(x_1), f(x_2), \ldots, f(x_k)) : f \in F\} \]

 - **Definition** For a positive number ϵ, we define the uniform covering number $\mathcal{N}_\infty(\epsilon, F, k)$ to be the maximum, over all $x \in X^k$, of the covering number $\mathcal{N}(\epsilon, F|_x, d_\infty)$ that is,

 \[\mathcal{N}_\infty(\epsilon, F, k) = \max\{\mathcal{N}(\epsilon, F|_x, d_\infty) : x \in X^k\} \]

 The uniform covering number is a generalization of the growth function. Suppose that functions in H map into $\{0, 1\}$. Then for all $x \in X^k$, $H|_x$ is finite and, for all $x \in X^k$, $H|_x$ is finite and, for all $\epsilon < 1$, $\mathcal{N}(\epsilon, F|_x, d_\infty) : x \in X^k = |H|_x|$, so $\mathcal{N}_\infty(\epsilon, F, k) = \prod_H(m)$
Theorem 10.1 Suppose that F is a set of real-valued functions defined on the domain X. Let P be any probability distribution on $Z = X \times \{0, 1\}$, ϵ any real number between 0 and 1, γ any positive real number, and m any positive integer. Then,

$$P^m \{\text{er}_P(f) \geq \hat{\text{er}}_2^\gamma(f) + \epsilon \text{ for some } f \text{ in } F\} \leq 2N_\infty(\gamma/2, F, 2m)\exp(-\epsilon^2m/8)$$
Symmetrization: bound the desired probability in terms of the probability of an event based on two samples.

Lemma 10.2 With the notation as above, let
\[Q = \{ z \in \mathbb{Z}^m : \text{some } f \text{ in } F \text{ has } er_P(f) \geq \hat{er}_z^\gamma(f) + \epsilon \} \]
and
\[R = \{ (r, s) \in \mathbb{Z}^m \times \mathbb{Z}^m : \text{some } f \text{ in } F \text{ has } \hat{er}_s(f) \geq \hat{er}_r^\gamma(f) + \epsilon/2 \} \]
Then for \(m \geq 2/\epsilon^2 \),
\[P^m(Q) \leq 2P^{2m}(R) \]
10.3 A Uniform Convergence Results

▶ Permutations: involving a set of permutations on the labels of the double sample.

▶ Let Γ_m be the set of all permutations of $\{1, 2, \ldots, 2m\}$ that swap i and $m+i$. For instance, $\sigma \in \Gamma_3$ might give

$$\sigma(z_1, z_2, \ldots, z_6) = (z_1, z_5, z_6, z_4, z_2, z_3).$$

▶ Using Lemma 4.5 we can get

$$P^{2m}(R) = \mathbb{E}Pr(\sigma z \in R) \leq \max_{z \in Z^{2m}} Pr(\sigma z \in R).$$
10.3 A Uniform Convergence Results

Lemma 10.3 For the set $R \subseteq \mathbb{Z}^{2m}$ defined in Lemma 10.2, and for a permutation σ chosen uniformly at random from γ_m

$$\max_{z \in \mathbb{Z}^{2m}} \Pr(\sigma z \in R) \leq \mathcal{N}_\infty(\gamma/2, F, 2m) \exp(-\epsilon^2 m/8)$$

(proof) Fix a minimal $\gamma/2$-cover T of $F|_x$. Then for all f in F there is an \hat{f} in T with $|f(x_i) - \hat{f}_i| < \gamma/2$ for $1 \leq i \leq 2m$. Define $\nu(\hat{f}, i) = I(margine(\hat{f}_i, y_i) < \gamma/2)$ and use Hoeffding’s inequality.
10.3 A Uniform Convergence Results

- When the set \(\{ f(x) : f \in F \} \subset \mathbb{R} \) is unbounded, then \(\mathcal{N}_\infty(\gamma/2, F, 1) = \infty \) for all \(\gamma > 0 \)

- Consider \(\pi_\gamma : \mathbb{R} \to [1/2 - \gamma, 1/2 + \gamma] \) satisfies

\[
\pi_\gamma(\alpha) = \begin{cases}
1/2 + \gamma & \text{if } \alpha \geq 1/2 + \gamma \\
1/2 - \gamma & \text{if } \alpha \leq 1/2 + \gamma \\
\alpha & \text{otherwise}
\end{cases}
\]

- Theorem 10.4 Suppose that \(F \) is a set of real-valued functions defined on a domain \(X \). Let \(P \) be any probability distribution on \(Z = X \times \{0, 1\} \), \(\epsilon \) any real number between 0 and 1, \(\gamma \) any positive real number, and \(m \) any positive integer. Then,

\[
P^m\{ e_{r_p}(f) \geq \hat{e}_{r_2}(f) + \epsilon \text{ for some } f \text{ in } F \} \leq 2\mathcal{N}_\infty(\gamma/2, \pi_\gamma(F), 2m)\exp(-\epsilon^2 m/8)
\]
10.4 Covering Numbers in General

- Recall that a metric space consists of a set A together with a metric, d, a mapping from $A \times A$ to the nonnegative reals with the following properties, for all $x, y, z \in A$: (i) $d(x, y) = 0$ if and only if $x = y$ (ii) $d(x, y) = d(y, x)$, and (iii) $d(x, z) \leq d(x, y) + d(y, z)$

- As same way, we can define the ϵ-covering number of W, $N(\epsilon, W, d)$, to be the minimum cardinality of an ϵ-cover for W with respect to the metric d.

- **Lemma 10.5** For any class F of real-valued functions defined on X, any $\epsilon > 0$, and any $k \in \mathbb{N}$,

$$\mathcal{N}_1(\epsilon, F, k) \leq \mathcal{N}_2(\epsilon, F, k) \leq \mathcal{N}_\infty(\epsilon, F, k)$$
10.5 Remark

- **Pseudo-metric**: A pseudo-metric d satisfies the second and third conditions in the definition of a metric, but the first condition does not necessarily hold. Instead, $d(x,y) \geq$ for all x,y and $d(x,x)=0$, but we can have $x \neq y$ and $d(x,y)=0$.

- **Improper coverings**: if (A, d) is a metric space and $W \subseteq A$, then, for $\epsilon > 0$, we say that $C \subseteq A$ is an ϵ-cover of W if $C \subseteq W$ and for every $w \in W$ there is a $v \in C$ such that $d(w,v) < \epsilon$. If we drop the requirement that $C \subseteq W$ then we say that C is an improper cover.

- **Lemma 10.6**: Suppose that W is a totally bounded subset of a metric space (A,d). For $\epsilon > 0$, let $\mathcal{N}'(\epsilon, W, d)$ be the minimum cardinality of a finite improper ϵ-cover for W. Then,

$$\mathcal{N}(2\epsilon, W, d) \leq \mathcal{N}'(\epsilon, W, d) \leq \mathcal{N}(\epsilon, W, d)$$

for all $\epsilon > 0$
8. Vapnik-Chervonenkis Dimension Bounds for Neural Networks

Part 2: Pattern Classification with Real-Output Networks
9. Classification with Real-Valued Functions

10. Covering Numbers and Uniform Convergence

11. The Pseudo-Dimension and Fat-Shattering Dimension
11.2 The Pseudo-Dimension

- Recall that a subset \(S = \{x_1, x_2, \ldots, x_m\} \) of \(X \) is shattered by \(H \) if \(H|_S \) has cardinality \(2^m \). This means that for any binary vector \(b = (b_1, b_2, \ldots, b_m) \in \{0, 1\}^m \), there is some corresponding function \(h_b \) in \(H \) such that
 \[
 (h_b(x_1), h_b(x_2), \ldots, h_b(x_m)) = b
 \]

- **Definition 11.1** Let \(F \) be a set of functions mapping from a domain \(X \) to \(\mathbb{R} \) and suppose that \(S = \{x_1, x_2, \ldots, x_m\} \subseteq X \). Then \(S \) is pseudo-shattered by \(F \) if there are real number \(r_1, r_2, \ldots, r_m \) such that for each \(b \in \{0, 1\}^m \) there is a function \(f_b \) in \(F \) with \(\text{sgn}(f_b(x_i) - r_i) = b_i \) for \(1 \leq i \leq m \). We say that \(r = (r_1, r_2, \ldots, r_m) \) witnesses the shattering.
11.2 The Pseudo-Dimension

Definition 11.2 Suppose that F is a set of functions from a domain X to \mathbb{R}. Then F has pseudo-dimension d if d is the maximum cardinality of a subset S of X that is pseudo-shattered by F. If no such maximum exists, we say that F has infinite pseudo-dimension. The pseudo-dimension of F is denoted $\text{Pdim}(F)$.
11.2 The Pseudo-Dimension

Theorem 11.3 Suppose F is a class of real-valued functions and $\sigma : \mathbb{R} \to \mathbb{R}$ is a non-decreasing function. Let $\sigma(F)$ denote the class $\{\sigma \circ f : f \in F\}$. Then $Pdim(\sigma(F)) \leq Pdim(F)$.

Theorem 11.4 If F is a vector space of real-valued functions then $Pdim(F) = dim(F)$

(proof) Use theorem 3.5: $H = \{\text{sgn}(f + g) : f \in F\}$ Then $VCdim(H) = dim(F)$ and $Pdim(F) = VCdim(B_F)$ where $B_F = \{(x, y) \mapsto \text{sgn}(f(x) - y) : f \in F\}$

Corollary 11.5 If F is a subset of a vector space F' of real-valued functions then $Pdim(F) \leq dim(F')$
11.2 The Pseudo-Dimension

Suppose that \(F \) is the class of affine combinations of \(n \) real inputs of the form

\[
f(x) = w_0 + \sum_{i=1}^{n} w_i x_i,
\]

where \(w_i \in \mathbb{R} \) and \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) is the input pattern. We can think of \(F \) as the class of functions computable by a linear computation unit, which has the identity function as its activation function.

Theorem 11.6 Let \(F \) be the class of real functions computable by a linear computation unit on \(\mathbb{R}^n \). Then \(\text{Pdim}(F) = n + 1 \).

Proof \(F \) is a vector space. \(B = \{f_1, f_2, \ldots, f_n, 1\} \) is a basis of \(F \) where \(f_i(x) = x_i \) and 1 denotes the identically-1 function.

Theorem 11.7 Let \(F \) be the class of real functions computable by a linear computation unit on \(\{0,1\}^n \). Then \(\text{Pdim}(F) = n + 1 \).
11.2 The Pseudo-Dimension

- Consider the class of polynomial transformations. A polynomial transformation of \mathbb{R}^n is a function of the form

$$f(x) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots + w_l \phi_l(x)$$

where $\phi_i(x) = \prod_{j=1}^{n} x_i^{r_{ij}}$ for some nonnegative integers r_{ij}.

- The degree of ϕ_i is $r_{i1} + r_{i2} + \ldots + r_{in}$.

- For instance, the polynomial transformations of degree at most two on \mathbb{R}^3 are the functions of the form

$$f(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_1^2 + w_5 x_2^2 + w_6 x_3^2 + w_7 x_1 x_2 + w_8 x_1 x_3 + w_9 x_2 x_3.$$

- **Theorem 11.8** Let F be the class of all polynomial transformations on \mathbb{R}^n of degree at most k. Then

$$Pdim(F) = \binom{n + k}{k}$$
11.2 The Pseudo-Dimension

(proof) F is a vector space. Let [n] denote \{1, 2, \ldots, n\} and denote by \([n]^k\) the set of all selections of at most k objects from [n] where repetition is allowed. \(\phi^T(x) = \prod_{i \in T} x_i\) We can state that

\[
f(x) = \sum_{T \in [n]^k} w_T \phi^T(x)
\]

Define \(B(n,k)=\{\phi^T : T \in [n]^k\}\) and show that this set is linearly independent.

Theorem 11.9 Let \(F\) be the class of all polynomial transformations on \(\{0, 1\}^n\) of degree at most \(k\). Then,

\[
Pdim(F) = \sum_{i=0}^{k} \binom{n}{i}.
\]
11.3 The Fat-Shattering Dimension

\begin{itemize}
 \item **Definition 11.10** Let F be a set of functions mapping from a domain X to \mathbb{R} and suppose that $S = \{x_1, x_2, \ldots, x_m\} \subseteq X$. Suppose also that γ is a positive real number. Then S is γ-shattered by F if there are real numbers r_1, r_2, \ldots, r_m such that for each $b \in \{0, 1\}^m$ there is a function f_b in F with

 \[f_b(x_i) \geq r_i + \gamma \text{ if } b_i = 1, \text{ and } f_b(x_i) \leq r_i - \gamma \text{ if } b_i = 0, \text{ for } 1 \leq i \leq m. \]

 \item **Definition 11.11** Suppose that F is a set of functions from a domain X to \mathbb{R} and that $\gamma > 0$. Then F has γ-dimension d if d is the maximum cardinality of a subset S of X that is γ-shattered by F. If no such maximum exists, we say that F has infinite γ-dimension. The γ-dimension of F is denoted $fat_F(\gamma)$.
\end{itemize}
11.3 The Fat-Shattering Dimension

- $f : [0, 1] \to \mathbb{R}$ is of bounded variation if there is V such that for every integer n and every sequence y_1, y_2, \ldots, y_n of numbers with $0 \leq y_1 < y_2 < \ldots < y_n \leq 1$, we have

 $$
 \sum_{i=1}^{n-1} |f(y_{i+1}) - f(y_i)| \leq V
 $$

 In this case, we say that f has total variation at most V.

- **Theorem 11.12** Let F be the set of all functions mapping from the interval $[0,1]$ to the interval $[0,1]$ and having total variation at most V. Then,

 $$
 fat_F(\gamma) = 1 + \left\lfloor \frac{V}{2\gamma} \right\rfloor
 $$
11.3 The Fat-Shattering Dimension

Theorem 11.13 Suppose that F is a set of real-valued functions. Then,
(i) For all $\gamma > 0$, $fat_F(\gamma) \leq Pdim(F)$.
(ii) If a finite set S is pseudo-shattered then there is γ_0 such that for all $\gamma < \gamma_0$, S is γ-shattered.
(iii) The function fat_F is non-increasing with γ
(iv) $Pdim(F) = \lim_{\gamma \downarrow 0} fat_F(\gamma)$ (where both sides may be infinite).

Theorem 11.14 Suppose that a set F of real-valued functions is closed under scalar multiplication. Then, for all positive γ,

$$fat_F(\gamma) = Pdim(F).$$

In particular, F has finite fat-shattering dimension if and only if it has finite pseudo-dimension.